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The problem of a spherical (and cylindrical) shock-wave focussing at the 
center (axis) of symmetry in a homogeneous quiescent gas was investigated 
by Guderley [ 1 I. He constructed a self-similar solution describing the 
gas motion for a strong converging shock-wave whose front propagates as 
a power of time. Below, the problem is considered of a converging shock- 
wave in a gas of variable density. 

1. Let the initial (undisturbed) condition of an ideal gas be given 
by the formulas 

where F, p, p, v 

center (axis, or 
velocity. 

The equations 
have the form 

P = PO7 p = wrs, I? LEG 0, (s > w (l.l) 

are, respectively, the distance of a particle from the 
plane) of symmetry, the pressure, density, and mass 

of one-dimensional adiabatic motion of an ideal gas 

au 1 aP C-&+__.__=O 
par ’ 

!t+a3g2 j-(4)+0 

&($)-;ug-(-j-)-o (i.2) 

where t is the time, y the adiabatic index; v = 1 for plane, v = 2 for 
cylindrical and v = 3 for spherical waves. 

‘Ibe conditions at the shock-wave may be taken in the form 

2’2 = VI + &Cl(&--XI), P2 = Pip- +pf2- I)] 

(r+1)M2 
pz = f+ 2 + (r _ 1) M2 ( J/f = Q---D 

Cl > (1.3) 
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A converging shock-wave in a gas 1335 

where c is the speed of sound and D the speed of translation of the 

shock-wave front. Index 1 corresponds to conditions ahead of the shock, 

and index 2 behind the shock, where necessarily (M( S- 1. 

Let the position of the converging shock-wave be determined by a power 

law: r(t) = at-t)', where 6 > 0, a > 0 and conditions ahead of the shock 

are given by Equations (1.1). Then from (l.l), (1.3) we have 

2 _ TPO 
cl-y' 

&f = ‘aA 6 $-A+'/ts 

wr vypo 

(A = +) (1.4) 

In order that the inequality MA 1 be realized as r + 0, it is neces- 

sary that 6 < 2/(2 + s). If 6 <2/(2 + s), then M+ 00 as F + 0; on the 

other hand if 6 = 2/(2 +s), then M is a constant (which must be no less 

than 11, and the wave has constant intensity. 

We will suppose the motion behind the shock to be self-similar [2 1 
with determining parameters r, t, o, a. With 6 = 2/(2 + s) the dimensions 
of p,, are expressed in terms of the dimensions of a and o, which is 

evident from (1.41, and the assumption of self-similarity is consistent 

with the conditions (l.l), (1.3). However, if 6 < 2/(2 + s) then since 

the shock-wave becomes strong near F = 0, the initial pressure p. may be 

neglected, and conditions (1.3) taken in the form 

26 
u2=- y+1 

.A$-A, p2 _ 262a2Ao 

r+1 

r2-2A+s , (1.5) 

'lhe dependent variables u, p, p are expressed, under the assumption of 

self-similarity, by the formulas 

2, = f v (A), P= 7 WTSP (A), p = b.vSR (h) 
C 

i=r 

aIt? > 
(1.6) 

'lhe notation for the multipliers 6 and a2 of V and P differs from that 

used in [2 1. 

Substituting Equations (1.6) into Equations (1.2), and introducing in 

place of P a new dependent variable z = yP/R, we obtain the known ordin- 

ary differential equations for self-similar motion 

dz z (2+x-~~-22V6)A+(~-l)6(v-l)B 
JjF=L’-_1 (x - 14’6) A + 6 (1 - V) B 

(1.7) 

d In li 6A 
dV= (x-vVh)A+h(l-V)B (lJ9 

v - 1) $g 
~_~s+v~v_(~-~V8)A+~(~-V)B 

6A (1.9) 

Here 
A(V, z)= z--(l-V)2 (1.10) 

B(V) = (Y - 1)P + l-;-V + T, x=2--s~+2) >() 
T I 
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Initial conditions for this system are obtained from the conditions 

at the shock-wave, in which it is necessary to substitute the expressions 

(1.6). For 6 = 2/(2 + s) the initial conditions have the form (M > 1) 

r;=-&<l-&), R= (r+l)M’ 
:!+(r-l)Mz 

for A=1 (1.11) 

In the case 6 < 2/(2 + s) we obtain the following initial conditions: 

J/c:! 
rfl’ 

z _ a(r-11) 
(r+ IF ’ 

R--r+1 
T--1 for h= 1 (1.12) 

If the number 6 is known, the problem reduces to integration of one 

differential equation (1.7) for given initial conditions, and two 

quadratures; Equation (1.9) may be replaced by the integral of adiabati- 

city I2 1 . 

For the determination of 6 we require that the solution constructed 

have physical sense and describe the motion of gas with a converging 

shock-wave all the way to its arrival at the center (axis or plane) of 

symmetry, that is, for all t c 0. We suppose the gas motion to be con- 

tinuous in the region behind the shock. 
. 

In order that v and p be bounded for t = 0, I- f 0, it is necessary, 

as is evident from (1.61, that V = 0, P = 0, and consequently also z = 0 

at X = m. Therefore, the integral curve of Equation (1.7) in the Vz-plane, 

giving the solution of the problem, should pass through the origin of 

coordinates 0, which is a singular point (node) of Equation (1.7). One 

integral curve passes through it with slope (dz/dV), = l/~, and the 

others are tangent to the V-axis. 

‘lhe initial points in the Vz-plane, determined by (1.11) lie on the 

parabola 

(1.13) 

where as M increases from 1 to 00 the coordinates V, z of the initial 

point change correspondingly: 

2 
from 0 to T/O=-- from 1 to 2’ = %(T-i) 

r+l (r+l)” 

Thus for 6 = 2/(2 + s) the solution passes through points of the para- 

bola (1.13) between (0, 1) and N(V”, zO), whereas for 6 < 2/(2 + sl it 

passes through the point N. 

Ibis segment of the parabola and the point 0 lie on opposite sides of 

the curve A(V, z) = 0, so that the desired integral curve must intersect 
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it. In moving along the integral curve which gives the solution from the 

initial point to the point 0, the value of X should increase monotonic- 

ally from 1 to m; otherwise one and the same h would correspond to differ- 

ent V and z, and the flow would be discontinuous. But for A = 0, as is 

evident from (1.8), )I has generally speaking an extremum. 'Iherefore, in 

order that the solution have physical meaning, it is necessary that the 

desired integral curve intersect the parabola A = 0 in a singular point 
of the differential equation, at which A = 0 and V = 1, or A = B = 0. 

The first possibility corresponds to the point Q(1, 0). A detailed 

analysis of the system (1.7)-(1.9) in the neighborhood of the singular 

point Q shows that none of the curves passing through it can be the de- 

sired solution. 

The second possibility corresponds to the pair of singular points 

P 
1,2’ whose z-coordinates are determined by the equation zl 2 = (V, 2 - 

U2, and V, and V2 (VI < V2) are the roots of the quadratic equation 
B(V) = 0, where B(V) is determined by Equation (1.10). 

Since K > 0, V, and V2 have the same sign. Let V, < V< 0; then the 

desired integral curve, in going from the initial point, must intersect 

the axis V= 0 in order to pass through P, or P2. In so doing it must 

remain in the region A > 0, where the initial point lies. But from (1.8) 

with A > 0, V= 0 (therefore Bh 0) it follows that d In X /dV> 0. 
Therefore, as the curve passes from V> 0 to V< 0, X decreases, which 
contradicts the requirement of monotonic increase of X along the curve 

from the initial point to point 0. 

Consequently, a necessary condition for possible construction of a 

solution with the required properties is the existence of a non-negative 

root of the quadratic equation B(V) = 0. Substituting into it K from 

Equation (l.lO), we obtain after a simple transformation 

1 2+s 7 (Y - 1) v [V - 1 s + / 2 (Y - I)] -- - 
6 2 

= 
(2 -r) v - 2 

Hence it follows that the two requirements 6 G Z/(2 + s) and V 4 0 
are compatible only for 0 < V 91 - s/2(u - l), for which it is neces- 

sary that s Q 2(v - 1). When the last inequality is satisfied, 6 may lie 

in the range 

where 

(1.14) 

Vo = 2+{41-~[1- 2(vfi-l) 1) 
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and each 6, except the minimum, corresponds to two values of V. With in- 
creasing 6 the larger of these (V,) increases from V, to 1 - .s/~(v - 1), 

and the smaller (I’,) decreases from V. to 0. 

Thus if s < 2(v - 1) and 6 is subject to condition (1.14), then the 
necessary conditions for construction of a solution are satisfied. It is 
then possible, generally speaking, to construct self-similar solutions 
of two types (with y, v and s fixed). 

1. We suppose that 6 < 2/(2 + s); the desired integral curve should 
pass through the fixed initial point N and run into point 0, intersect- 
ing the parabola A( V, z) = 0 in one of the singular points P, 2. ‘Ihe con- 
dition for determining 6 is that the point N lie exactly on the integral 
curve passing through the singular point in the specified direction. ‘Ibe 
choice of 6 and construction of the solution are realized by the method 
of successive approximations: Equation (1.7) is integrated numerically 
for different 6 (lying within the limits (1.14)) from the singular point, 
until N lies on the curve. 

2. Let 6 = 2/(2 + s); the field of integral curves is then fixed, and 
any point on the segment (1.13) of the parabola may serve as initial 
point. ‘Ibe singular point P, has coordinates (0, l), and analysis shows 
that for any SA 0, along any curve passing through this point, h de- 
creases as PI is approached from the region VA 0, where the initial point 
lies. ‘Ihe segment of the axis from 0 to P, gives a trivial solution cor- 
responding to quiescence. 

lbus the desired solution for 6 = 2/(2 + s) can go only through point 
P,. If the integral curve of Equation (1.7) passing through 0 and P, 
(with variation of X in the desired direction) intersects the initial 
parabola (1.13) with 0 < V h V”, then it gives the solution of the prob- 
lem. The number M is determined from Equation (1.11) using the resulting 
point of intersection. 

The first case corresponds to a strong shock-wave, and the second to 
a wave of definite constant (moderate) intensity. We note that points 
P 1,2 Ior solutions of the first type lie between points P, 2 for the 
second case (for the same y, v and s). 

, 

With s = 0 (V f 1) no solution of the second type exists, since for 
s = 0, 6 = 1 point P, coincides with Q(l, 0). Solutions of the first 
type (with a strong wave) were constructed in 11 1; the integral curve 
passes through the singular point P,, which is a saddle. 

However, if the difference s - 2(u - 1) is negative and sufficiently 
small (V f l), then conversely only a solution of the second type can be 
constructed, with a moderate wave. In this case point P, is a saddle; of 
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the two curves passing through it, along only one does X increase in 
passing from the region A > 0 to A < 0. 

‘Ihe slope dz/dV of this curve becomes arbitrarily large as 
1s - 2(u - 111 + - 0, and the point P, itself is arbitrarily near to 
(0, 1); this also guarantees the intersection of the curve with the seg- 
ment of the initial parabola. The number M, corresponding to the point of 
intersection, tends to 1 as Is - 2(v - 111 + - 0. It is impossible to con- 
struct a solution with a strong wave here; the integral curve passing 
through P, and P, (lying near to point (0, 1))) does not reach point N. 

As s increases from 0 to 2(v - 1) the type of solution apparently 
changes in the following way. At first (for s close to 0) only a solution 

with a strong shock wave is possible, that is with S < 2/(2 + s), and 
the rate of approach of C to 00 as r + 0 decreases as s increases. For a 
certain s there is a solution passing through point N such that 
S = 2/(2 + s). This is a case of a solution that 
is intermediate between the first and second L 
types, where the wave has constant but infinitely I 

great intensity. With further increase in s only 
the solution of the second type (with a moderate 
wave) is realized, and the constant M decreases 

g L, 

from m to 1 as s increases to 2(v - 1). 

A solution of the first type may, generally 
speaking, be constructed also for s < 0; here a L&z& 

ry 
G s 

u ss 

N 

0 s; L i;i 

solution of the second type is impossible, since 
for S = 2/(2 + S) the singular point P, lies in 

Fig. 1. 

the region V > 1, separated from the initial 
parabola by the straight line V= 1 (an integral of Equation (1.7)). 

A schematic view of the solutions for various s is given in Fig. 1. 
Here L, is the parabola of initial points, L, the curve z = (1 - V)2 on 
which lie the singular points P, 2, arrows indicate the direction of in- 
creasing X, and si < sj for i < j and s i does not exceed 2(v - 1). Ihe 
value s1 corresponds to a solution of the first type, s2 to the dividing 

case, and s3 and s4 to solutions of the second type, where M3 > M4. For 
v # 1 the value s = 2(v - 1) corresponds only to a trivial solution - a 
segment of the z-axis. 

In the case of a plane wave (v = 11 there is only 
P,, the coordinate V, of which is related to S by 

1 2+s TVlS -- 
6 -=a[(a--)I/‘,-T] 2 

one singular point 

(1.15) 



1340 F.L. Chernous ‘ko 

A solution of the second type is impossible for s f 0, since with 
6 = 2/(2 + sl we obtain ‘v, = 0, and point P, has coordinates (0, 1). For 
s = 0, as is evident from (1.15), 6 should be equal to 1. In this case 
B( I4 2 0, and passage of the solution through the parabola A = 0 is 
possible, because X has no extremal on it. Equations (1.7)-(1.9) have 
the simple solution 

v = v (1) a-1, % = 2 (1) h-2, R = R(1) 

Here J’(l), z(l), R(l) are given by the initial conditions (1.11). 

Thus for s < 2(v - 1) a self-similar solution may be constructed with 
a strong or moderate converging shock-wave. After construction of the 
solution all characteristics of the solution are known for t = 0, and its 
distribution is self-similar. Consequently, a Cauchy problem may be 
solved for the motion of the gas when t 3 0 in the same self-similar 
variables. In the case s = 0 such a solution is constructed in 111 with 
a reflected diverging shock-wave. 

2. For s > 2(v - 11 the particular points P, 2 for the solutions of 

the two types lie in the region V < 0. Consequently, the necessary con- 
dition for construction of automodel solutions with strong or moderate 
(M = const 1) converging shock-waves is infringed. 

Uniqueness of the self-similar solution is here trivial, in the 
absence of perturbations. Since for [s - P(v - 111 + - 0 the intensity 
of the shock-wave for a self-similar solution of the second type de- 
creases, tending to 0, it is natural to suppose that for s > 2(v - 1) 
there exist motions with converging shock-waves, that are weak near 
1 = 0. 

Having this in mind, for the case s > 2(v - 1) we linearize Equations 
(1.21. We set 

P = PO + PO, p = (j)p -I- f 

and will suppose 

We write the linearized equations of motion 

(2.1) 

We denote by u(r, t ) the displacement of a particle from its initia 1 



A converging shock-rave in a gas 1341 

(undisturbed) position; then v = au/&. Here, as usual in linearized 
theory, the difference between the Eulerian and the Lagrangean coordinate 
of a particle is neglected. Integrating the second and third of Aqua- 
tions (2.1) with respect to t under the conditions that u = 0, p” = 0, 
pO=Oast+-m, we obtain after a simple transformation 

PO=--‘yplJ $+“1’u, ( > p” = a&po - s@rY-lu (2.2) 

substituting (2.2) into the first of Equations (2.1), we obtain an 
equation for the basic dependent variable u(r, t ) : 

02 CPU --=_ 
TPO at2 aar [g + (v - 1) p] 

The characteristics of this linear hyperbolic second-order equation 

are 

&+ + ;y;‘;;_ = E, t _ 2 Vorl+F_ = r, 
s 0 2 + S) VTPO 

In characteristic variables, after changing the dependent variable, 
we obtain an Euler-Poisson-Darboux equation: 

It is known that the general solution of Equation (2.4) can be found 
in closed form if m is an integer. ‘Ihus with s = 2(v - 1) we have m = 0, 
and the general solution of Equation (2.3) has the form 

For v = 1 it becomes the known solution for a plane wave. 

If the displacement u(r, t ) is found, the excess pressure and density 
are determined by Equation (2.2) and the velocity by v = du/dt. We can, 
however, obtain also a separate equation for this variable: 

ors a=, --=- 
7Po at= ;r[$+(v-l);], $g=ag+v-;-‘$ (2.5) 

It is easy to see that Equation (2.3) has a group-invariant solution 
of the form 

(2.6) 
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weak shock. 

At t = 0 we have the boundary condition ~(0, t) = 0, expressing the 

absence of sources or sinks. 

In Fig. 2 the curves S, and S, represent characteristics, the incoming 

and reflected wave-fronts, whose equations are x = 0, x = 1 (cf. (2,6)), 

and 1, 2 and 3 are regions in the r-t-plane in which solutions must be 

found. 

From Equations (2.7) and (2.8) it follows that with the condition of 

continuity of displacement on the incoming and reflected front, the 

relation (2.12) is satisfied on it automatically. 

Before the arrival of the perturbation, for 

- m < x G 0 (region 1 in Fig. 2) we have 

Ihe displacement on the front of the converging 

wave (at x = 0) changes continuously, and the 

velocity and pressure undergo a finite jump. Miith- 

out loss of generality (because of the linearity 

of the equations) we require 

wz (0) = 0, wz’(0) = 1 (2.13) 

For the determination of the motion in region 2 (for 0 < x 91) it is 

necessary to construct a solution of the hypergeometric equation (2.9) 

with parameters (2.10) for the initial conditions f2.13), the quantity k 
remaining undetermined for the present. The point x = 0 is singular for 

the hypergeometric equation, and consideration of its linearly-independent 

solutions in the neighborhood of this point 13 1 for different 13 shows 
that both conditions (2.13) can be satisfied only for 6 = 0. Thus 

kz2+ v 2+S 
4-T5=-” 2 

(2.14) 

It is possible to consider also solutions with 6' f 0; then the pres- 

sure and velocity on the front of a converging wave will approach 0 or =. 

For 0 = 0 the solution of Equation (2.9) satisfying conditions (2.13) 

is unique, and has the form (considering the values of a, ,f3, k) 

w,=xF(i--m,m;2;x) (2.15) 

where Fis a hypergeometric series, converging absolutely for 1x1 < 1. 
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where w is a twice-differentiable dimensionless 

less argument x, and C is an arbitrary constant 

a gas 1343 

function of the dimension- 

of dimensions (cm)-k. 

If the displacement is given by Equation (2.6), then for v and p" we 

obtain, using v = du/& and (2.2) 

(2.7) 

where the functions g(x) and a(x) are expressed in terms of w(z) in the 

following form: 

Q (4 = w’ (4, 6 (cc) = (1 - 24 w’ (.?J) + t4 tk + VI w (41 
2+s (2.8) 

Substituting (2.6) into (2.3) we obtain an ordinary differential equa- 

tion for the function z&z). This is the hypergeometric equation 

x(1 --)wI + [e - (1 + o + @qW'-uapw = 0 (2.9) 

with the following values of the parameters 

2k 
a= -2_ts, 

2 (k + v) 
B=--,t_, 

Q! 8, 8: 

o+sg (2.10) 

After substitution of Expression (2.7) into Equation (2.5) we obtain 

analogous differential equations for q and u. 'Ihey are also hypergeo- 

metric, with parameters 

a=l-J!L 
a+s 

e+- 2k + v 

2-I-s 
for Q 

2k 
a=-:!+;, 

(2.11) 

for 0 

We construct a solution of the form (2.6) with a weak shock-wave con- 

verging in quiescent gas. At t = 0 reflection of the shock occurs from 
the center (axis, or plane) of syarnetry. 

'Ihe conditions on the shock-wave (1.3) may, in the case of a weak 

shock (M+ l), be taken in the form 

PzO - PI0 = Bwrs (27, - VI), D = -tVuhlor8 (2.12) 

with the plus sign for a diverging, and minus for a converging wave. 

The third condition on the shock-wave is satisfied automatically in 

virtue of the nearness of adiabatic and isentropic compressions for a 
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‘Ihe functions ql(x) and o,(z) are determined by using (2.8); it is 

convenient, however, to take advantage of the fact that they satisfy 

hypergeometric equations with the parameters (2.11). The solutions of 

these equations with initial conditions q2(0) = 1, ~~(0) = 1, resulting 

from (2.13) and (2.8)) have the form 

qz = F (1 -m, m; 1; x), cs2= F(-mm;1 +m; 1;~) (2.16) 

In order to determine the motion in region 3 (Tar 1 < x < -), it is 

necessary to find a solution of Equation (2.9) for which ~(0, t ) = 0. 

Of the two linearly-independent solutions of the hypergeometric equation 

14 I in the vicinity of the singular point x = 00 only one satisfies this 

condition, namely 

IL+ = Ex”F (- m, 1 -m; 2 - 2m; x-l) (2.17) 

where the series in (2.17) converges absolutely for 1 z \ G 1. 

On the front of the reflected wave the displacement changes continu- 

ously; therefore ~~(1) = u+(l), from which is found the constant 

E’= 
r(l-mm) 

r (1 + m) 1 (2 -- 2m) (2.15) 

Using the same considerations that led to Equation (2.16), we deter- 

mine q,(z) and 03(z): 

qs = Emxm--1F (1 - m, I- m; 2 - 2m; x-l) 

o3 = 2E (1 - 2m) xmF (- m, - m;_- 2m; 2-l) 

(2.19) 

Thus the functions W, q, u are determined in the entire region, and 

with them the solution is found for the given problem of reflection of 

a converging wave. From the equations expressing the solution in regions 

2 and 3 it follows that the condition of linearization of the equations, 

that is, the conditions (Y 1 << r, 1 o ( << cl, 1 p” { << pa, are satisfied 

as r + 0, t + 0 if s > 2(v - 1) and k > 0. Violation of these conditions 

occurs only for x near to 1 (the reflected front) since the series 

(2.16) and (2.19) diverge for x = 1. 

We 
istic 

1. 

investigate the behavior of the solution on certain character- 

lines in the r-t -plane. 

On the front of the converging wave (x = 0) we have 
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Although the velocity on the shock grows without limit as r -) 0, the 

ratios u/c1 and p”/po are infinitesimally small there for s > 2(v - 1). 

This permits the conclusion that the converging wave is weak near r = 0 

and justifies the use of the approximate relations (2.12). 

2. We find the distribution of quantities at t = 0. In order to cal- 
culate the values of the hypergeometric series in (2.151 and (2.16) at 

x = l/2 required for this, we use the equations 

The first of these equations appears in C5 I, and the second may be 

obtained as its limiting case for (a + /3 + 1) + 0. NOW determining 

w,(1/21, q,(1/21, 0,(1/21, we find u, v and p” at t = 0 from (2.61 and 
(2.7): 

' = 
c -IG&+k 

4r (I + qzm) r (31~ - l:+) 

c (2 + s) J4-i I/ypOrk-s’2 
’ = 4 V/o17 (lit + ljzm) r (i - l/zm) 

TPoC(2~ + 2+ 4VZrk 
P" = - i6r (1 + ljzm) r (3jz -- ljzd 

3. On the front of the reflected wave (for x = 1) the deflection is 

finite and equal on both sides of the shock. Calculating u+(l), we find 

u on the reflected front from (2.6): 

C ( ) 4r’+k 

u= rc c0s 2ys I- [2v/(2+s)‘j2 

To estimate q and u near x = 1 we use the equation given in [5 I: 

lim F (~1, p; u+ P; I) = _ ’ (a + P) 
x+1-0 In (1 - 2) r (a) r (8 

From this it is evident that the velocity and pressure become 

logarithmically infinite near the reflected front, where it is seen that 

the coefficient of the logarithmic term is the same on both sides of the 

front. We have the equation 
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(2.20) 

It is evident that near the reflected front the condition of linear- 
ization is violated. 

4. Values of u, v, p” near the center (axis, or plane) of symmetry 
after reflection of the wave are determined by the asymptotic equations 

obtained from the solution in region 3 as r + 0 (or x -, m 1. If the con- 
verging wave is a wave of compression, C < 0; it follows from EQuation 
(2.20) that a rarefaction occurs near the reflected front (on both sides 
of it ), but a compression at r = 0. 

If m, determined by (2.4), is an integer, the general solution of 
Equation (2.3) is found in closed form. Tben all the parameters of the 
hypergeometric series (2.15), (2.161, (2.171, (2.19) *appear as integers, 
and these series are polynomials in x. In this case the logarithmic 

divergence at the front of the reflected wave Equation (2.29)) dis- 
appears , because COSCR v/(2 + s)l = 0. 

For s 2 2(v - 1) the number m can equal only one integer, zero, which 
occurs when s = 2(v - 1). In this uf = X, 20~ = E = 1. 

Substituting these relations into (2.6)-(2.8) we find the solution in 

simple form 

These equations generalize the solution of the problem of reflection 
of a plane acoustic wave (Y = 11. 

‘Ibe solution constructed satisfied the linear equations (2.1) also 
for s < 2fv - 1). Thus in the case of a spherical wave in a homogeneous 
gas, that is for s = 0, v = 3, we obtain 
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w2 = x(1 -z), E = 0, WQ = 0 

'Ihe solution has the form 

u2 = c I--mtz\ c TPO t 
4 o PJ’ 

v2= - Ty->Z 

c TPO ps” = - 1 r UQ 7 0, v3 = 0, p30 = 0 

A compression wave reflects as an expansion wave (and conversely), 

after which the undisturbed state is re-established. 

'Ihe solution of the problem of a converging cylindrical acoustic wave 

in a homogeneous gas is obtained if we take s = 0, u = 2 in Equations 

(2.6)-(2.8), (2.14)-(2.19). 'Ihis case was considered in 16 1 and [7 1. 
In 16 1 the solution of the equation that we reduce to a hypergeometric 

one is found in the form of a series, and in [7 1 a converging cylin- 
drical wave is constructed by superposition of plane waves. lhe expres- 

sion for the pressure found by Zel'dovich 17 1 in the form of an integral 
depending on a parameter is obtained from (2.16) and (2.19) by use of the 

integral representation of the hypergeometric function [3 1 

1 

F (a, Pi fk 4 = r $ I;‘_ p) s zp-I(1 - z)e--8-1(1-zZ)-adz @>P>O) 

0 

However, for s < 2(v - 1) we have k < 0, and the conditions of linear- 

ization of the equations are violated near r = 0. Thus the intensity of 

the converging wave becomes infinite according to the linear solution, 

which contradicts the assumption of applicability of Equation (2.12). 

Therefore, in the case s < 2(u - 1) the linear solution under considera- 

tion is invalid near r = 0. In particular, the acoustic approximation 

for converging spherical and cylindrical waves in a uniform gas becomes 

invalid as the wave approaches the center (axis) of symmetry; there, the 

nonlinear solution constructed by Guderley cl 1 applies. 

We note that the solution under consideration is asymptotically valid 

as r + 0, t + 0 also under assumptions somewhat more general than (1.1) 

regarding the undisturbed state. Thus the quantities o and p0 can be 

continuous functions of time which does not affect the process of re- 

flection of the wave near r = 0, t = 0. The initial velocity of the 

particles need not be zero; if the estimates 
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v(r,O)=o(r-‘igs) for s<2(v-I), 

21 (7, 0) = 0 (r*f+f+--IN) for s >, 2 (v - 1) 

hold for t + 0, then it can be neglected in comparison with the velocity 
behind the shock, and the solution remains valid. 

Thus if the density of an ideal gas near the center (axis, or plane) 
of symmetry is distributed according to a power-law, then the behavior 
of a converging shock may be different depending on the value of s. For 
s < 2(V - 1) the shock-wave is intensified, or conserves a determined 
constant intensity near I = 0, whereas for s > 2(u - 1) it weakens. 7he 
first case may be studied with the use of self-similar solutions, and 
the second on the basis of the linearized equations, where the linear- 
ization is correct for the converging wave. 

I regard it as my duty to express profound thanks to S-S. G&an 
for guidance in the execution of this work. 
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